M.Math. IInd year
 First semestral exam 2020
 Number Theory - Instructor : B.Sury
 December 26, 2020 - 10 AM - 1 PM

Answer ANY SIX - parts of questions will not be accepted.

Q 1.
If $d>2$, show that the ring $\mathbb{Z}[\sqrt{-d}]$ cannot be a Euclidean domain.
OR
Let q be a prime of the form $4 k+1$ such that $p=2 q+1$ is also prime. Prove that 2 is a primitive root modulo p but may not be a primitive root modulo q.

Q 2.

Let p be an odd prime. Show that the numerator of $\frac{n^{p}-n}{p}+\sum_{r=1}^{p-1} \frac{(-1)^{r}\left(1^{r}+2^{r}+\cdots+(n-1)^{r}\right)}{r}$ is a multiple of p.

OR

Let $p>3$ be a prime and write $\sum_{d=1}^{p} \frac{1}{d}=\frac{r}{p s}$. Prove that p^{3} divides $r-s$.

Q 3.

Let a, b, x_{0} be positive integers and define $x_{n}=a x_{n-1}+b$ for $n>0$. Prove that not every x_{n} can be prime.

OR
Prove that a Fermat number $2^{2^{n}}+1$ can never be a prime power p^{r} with $r \geq 2$.

Q 4.

If p is a prime and $n>r$ are positive integers, write $n=\sum_{i \geq 0} n_{i} p^{i}$ and $r=\sum_{i \geq 0} r_{i} p^{i}$ be their base p expansions. Prove that

$$
\binom{n}{r} \equiv \prod_{i}\binom{n_{i}}{r_{i}} \quad(\bmod \quad p) .
$$

OR

Prove that $(p-2)!=1+p^{n}$ does not have any solution in primes $p>5$ and positive integers n.

Q 5.

Evaluate the sum of Legendre symbols $\sum_{a=1}^{p-1}\left(\frac{a(a+1)}{p}\right)$.

OR

Let $p>3$ be a prime. Show that $\left(\frac{3}{p}\right)=\prod_{r=1}^{(p-1) / 2}\left(3-4 \sin ^{2}(2 \pi r / p)\right)$.
Q 6. Prove:
(i) $\frac{n}{\phi(n)}=\sum_{d \mid n} \frac{\mu(d)^{2}}{\phi(d)}$.
(ii) $\mu(n)=\sum_{(k, n)=1} e^{2 i k \pi / n}$.

OR

Prove:
(i) $\prod_{(a, n)=1} a=n^{\phi(n)} \prod_{d \mid n}\left(d!/ d^{d}\right)^{\mu(n / d)}$.
(ii) If $m \geq 1$ and n has more than m distinct prime factors, then $\sum_{d \mid n} \mu(d) \log (d)^{m}=$ 0 .

Q 7.

Observe that no isosceles right angled triangle can have all sides of integer length. However, show that for any $\epsilon>0$, there are primitive Pythagorean triples for which the corresponding right angled triangles have the acute angles within ϵ of 45 degrees.

OR

Prove that $\left(x^{2}-17\right)\left(x^{2}-19\right)\left(x^{2}-323\right) \equiv 0(\bmod n)$ has a solution for every positive integer n.

Q 8.

(i) Show that if n is represented by a quadratic form f of discriminant d, then $4 a n$ is a square $\bmod |d|$.
(ii) If $4 \mid d$ and d is not a perfect square, and every form of discriminant d is primitive, show that $d / 4$ is square-free and congruent to 2 or 3 modulo 4 .

OR

(i) Give an example (with proof) of forms $a x^{2}+b x y+c y^{2}$ and $a x^{2}-b x y+c y^{2}$ that are not equivalent.
(ii) Determine all reduced forms of discriminant -19. Reduce the quadratic form $7 x^{2}+25 x y+23 y^{2}$ to its reduced form.

Q 9.

Obtain simple, continued fraction expansions of $\sqrt{13}$ and $\sqrt{23}$. Deduce a solution of $x^{2}-13 y^{2}=-1$. Does the analogous equation $x^{2}-23 y^{2}=-1$ have a solution?

OR

Using Bertrand's postulate or otherwise, prove:
(i) For any positive integer n, prove that $\{1,2, \cdots, 2 n\}$ is a union of n pairs each of whose sums is a prime.
(ii) $n!=m^{k}$ does not have solutions for $m, n, k>1$.

